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We introduce a lattice gas for particles with discrete momenta (1, 0, - 1 )  and 
local deterministic microdynamics, which exactly reproduces Creutz's micro- 
canonical algorithm for the ferromagnetic Ising model. However, because of the 
manifest gauge invariance of our variables, both the Ising ferromagnetic and 
spin-glass systems share precisely the same dynamics with different initial condi- 
tions. Additional conservation laws in the 1D Ising case result in a completely 
integrable system in the limit of zero or unbounded demon energy cutoff. 
Numerical investigations of ergodicity are presented for the pure Ising lattice 
gas in one and two dimensions. 

KEY WORDS:  Lattice gas; cellular automata; microcanonical ensemble; 
Ising model; deterministic dynamics; spin glass. 

1. I N T R O D U C T I O N  

Several years ago, Creutz proposed a deterministic microcanonical 
algorithm (l'z) as a particularly efficient way to run a Monte Carlo simula- 
tion of the Ising model. His formulation has led to very fast multispin 
codes for vector supercomputers that rival the best speeds for the standard 
heat bath algorithm on dedicated special processors. (3"4) 
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However, as pointed out by Bhanot et  al., (2~ in such a purely deter- 
ministic scheme, ergodicity is harder to analyze. Although all Monte Carlo 
algorithms using pseudo random numbers are in fact deterministic, the 
class of algorithms which can be cast as a local dynamics on a finite set of 
bits clearly brings ergodicity more strongly into question. Indeed such algo= 
rithms, which are often referred to in the literature as cellular automata, (5) 
are known to exhibit a vast range of nonequilibrium phenomena from fluid 
flow (6) to continuous evolution as in the game of life. 

All these questions become even more difficult and interesting for the 
Ising spin glass, which is known to have usual metastability properties and 
very slow relaxation rates in Monte Carlo dynamics. 

Here we introduce a lattice gas on a hypercubic lattice with discrete 
momentum components (1, 0, - 1 )  on each axis and local scattering rules 
similar to the HPP lattice fluid investigated by Hardy e t a l .  (7) For very 
specific initial conditions, these rules are equivalent to Creutz's deter- 
ministic microcanonical algorithm for the ferromagnetic Ising model. 
However, our dynamics is more general and studying it has led us to 
several interesting observations: (1)There is in fact a single lattice gas 
dynamics for both the Ising and the spin-glass systems, differing only in the 
initial conditions. (2) Special limiting cases of the 1D system are exactly 
integrable. (3) In two dimensions, the bath degrees of freedom diffuse at a 
rate nearly independent of the temperature. 

We have also performed simulations of the length of individual orbits 
in the microcanonical phase space to investigate orbit distributions, 
averages, correlation functions, and ergodicity. One of our long-range goals 
is to arrive at a set of continuum dynamical equations, analogous to the 
time-dependent Ginzburg-Landau equations, which, however, encompass 
both ferromagnetic and spin-glass dynamics. 

2, G A U G E - I N V A R I A N T  LATTICE GAS D Y N A M I C S  

The local version of Creutz's microcanonical ferromagnetic Ising or 
spin-glass model consists of two sets of variables: first, the Ising spins 
s i=  _+1 for the magnetic moments at the sites on a periodic hypercubic 
lattice (ix = 1, 2,..., Lx; iy = 1, 2 ..... L y ;  etc.), with energy function 

EIsing = 2 (1--  J~sisj) (1) 
( i j )  

and quenched nearest neighbor couplings, J~=  _+1; second, the thermal 
bath variables, which are represented as uncoupled local variables 
bi = 0, 2, 4,..., b m a  x attached to each site with energy function 

Ebath = 2 ~ bi (2) 
i 
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The microcanonica l  dynamics  changes the state variables keeping the total  

energy, ETo t = Eising --I- Ebath , conserved. 
To  enforce t ime-reversal  symmetry ,  Creutz  defined a second-order  

dynamics  so that  two cycles in i terat ion t ime are required for a full update  
t -~  t + 2. At even/odd i terat ion cycles ( t = e v e n / o d d )  the microcanonical  
dynamics  a t tempts  to flip each spin on all the red/black ( ix+  iy+ . . . .  
even/odd)  sites. The flip is accepted if and only if the local energy conserva-  
t ion at each sites does not  force bi to go out of  range. With  bma x = -0  this 
update  rule is equivalent  to the Q2R cellular a u t o m a t a  rule of Bennett  and 
Vichniac. (8) 

2.1. Gauge- lnvar iant  Equations of Mot ion  

The microscopic  equat ions  of mo t ion  for gauge- invar iant  lattice gas 
( G I L G )  take the familiar form of a t ranspor t  equation,  

pu(i + #, t+  1 ) - p ~ ( i ,  t )=  F~(p~(i, t), b(i, t)) (3) 

and a continuity (or energy conservat ion)  equation,  

b ( i , t + l ) - b ( i , t ) + ~ [ p ~ ( i + # , t + l ) - p ~ , ( i , t ) ] = O  (4) 
# 

in terms of the ba th  varibles b(i, t) and a new set of single bit variables 
p,(i,  t), 

girrpt,(i,t) = Ji ,  j S i S j  (5 )  

The dynamics  is defined completely  once the collision term F ,  is given, 
and it is obviously invar iant  under  the local gauge t ransformat ions ,  

Ji, j ~ OiJijOj, si -+ Qisi (6) 

where f2 i=  +1. 
Our  " m o m e n t u m "  variables p~(i, t) are defined on all directed links 

j = i - # ~  i with # =  _+3, _+2 ..... d. A link with an "on"  bit pu(i )= 1 is 
thought  of  as a "part icle" or "ball" carrying m o m e n t u m  _+ 1 corresponding 
to the Ising energy stored in that  bond.  With  the positive m o m e n t u m  
convent ion 5 we can write Eq. (3) as 

2p~(i, t )=  l - Ji, jsis j (7) 

The ba th  bits for b(t, i) represent  z e r o - m o m e n t u m  "particles" fixed at the 
lattice site i (Fig. 1). 

s Note that negatively directed kinks carry momenta p_~(i, t) = 0, - 1 and symmetry in i, j 
gives the identity p_,(i, t)= p,( i-#,  t), so that all p'~ can be associated with either the red 
or black sites as one chooses. 
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Fig. 1. Example of the mapping from a 2D Ising Ferromagnet  to the gauge-invariant lattice- 
gas formulation. Balls represent the energy corresponding to links with sisj= -1. 

It is now easy to devise scattering rules that are equivalent to Creutz's 
cellular automaton. For  convenience we begin by decomposing the 
dynamics in terms of collisions at the sites followed by advection to the next 
site. All sites i are divided into red and black pairs. At a given time t, the 
initial conditions are chosen so only the red or the black sites have balls 
colliding with it. The collision rules at those active sites can be written 
either as a Boolean expression, 

p'~(i, t )=p u(i, t)| t),p~(i, t)) (8) 

or as an arithmetic expression, 

p'~(i , t)=p_~(i , t)[1-A(b,p~)q+[1-p_~(i , t)]A(b,p~) (9) 

where p, = 1, 0 corresponds to true and false respectively, and | is the 
"exclusive or." The acceptance function A is 1/0 (true/false) when the new 
demon energy is in bounds or out of bounds (0 ~< bi~< bin,x), respectively, 

,u u 

Figure 2 shows collision rules for 2D in the form of scattering diagrams. 6 
Now the advection of the moving balls, p,(i+#, t+ 1)=p'_~(i,  t), and 
local energy conservation complete the derivation of the equations of 
motion (3), (4) with the collision term 

Fu(b,p)=(1-2p , )A(b,p)+(p~,-p_~) (11) 

It is also interesting to consider a simpler rule closer to the H P P  fluid 
microdynamics by dropping the constraint p ~,(i, t )=pu(i -# ,  t) and 

6 The rules can be easily extended to the case of bond dilution by prohibiting links with J,j = 0 
to transport  a ball. 
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Scattering Rules with no demons: 

[ ]  
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Scattering Rules with 1-bit demon: 

; t ; 

Fig. 2. Scattering rules for the energy balls. Moving balls, representing broken links, move 
toward red (black) sites during the red (black) phase of the update cycle. Stationary balls 
(always in pairs) represent bath or demon energy. While the total number of balls (moving 
plus stationary) is always conserved, momentum is not. Rules in which scattering does not 
occur are not shown. 

allowing simultaneous red/black updates. This merely corresponds to two 
sets of independent  Ising lattices (with spins sl I) and sl 2)) that  share a 
c o m m o n  bath, 

(1) (1) (1) 
ETot = E (1--Jij si sj )4- 2 (1 (2) (2) (2) - J o  si sj ) + ~ 2 b i  

( i j )  ( i j )  i 

(12) 

This uniform rule gives the same Ising equilibrium, and it p robably  has 
some advantages bo th  as a parallel numerical a lgori thm and as a starting 
point  for deriving the con t inuum dynamical  equations. For  the spin-glass 
case, the two spin replicas may  help reduce critical slowing down. 
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3. GENERAL PROPERTIES OF THE LATTICE GAS D Y N A M I C S  

In the remainder of this paper, we begin to explore the microdynamics 
of our gauge invariant lattice gas (GILG). Eventually we hope to take 
coarse-grain averages over blocks of sites to find an accurate effective field 
theory description analogous to the fluid equations of the H P P  or F H P  
fluids (6) or a time-dependent Ginzburg-Landau equation for the pure Ising 
model. (9) However, such a theory must be quite subtle, since it should 
encompass both ferromagnetic and spin-glass behavior. We begin the 
program by identifying the conservation laws, pointing out a simple diffu- 
sion process in 2D, discussing the special integrability properties of 1D and 
reporting on some numerical simulations to support our contention that 
the 1D and 2D physics have quite different ergodicity properties. 

2.1. Conservat ion Laws 

While the above scattering rules are similar to the H P P  lattice cellular 
automata fluid, we have a very different set of conservation laws. The 
gauge-invariant lattice gas dynamics does conserve particle number (or 
energy), but momentum is not conserved except in 1D (see Section 4 for a 
discussion of the special properties of 1D dynamics). 7 Presumably in 2D 
and higher for the ferromagnetic Ising case, the macroscopic equations are 
of the diffusive transport type, which in turn imply the model C dynamics 
of Hohenberg and Halperin, (9) but there is no analogue of the Navier-  
Stokes equations. As we note below, numerical simulations indicate a 
simple underlying diffusion mechanism for the bath particles. We are also 
doing simulations to measure the autocorrelation functions and see if the 
critical dynamics is in fact model C.(l~ i1) 

The reason that the spin-glass dynamics is subsumed in this rule is tied 
to the existence of an infinite number of local conservation rules (one for 
each plaquette), 

Q~(i,t)=(p.(i,t)+pv(i+Iz, t)-p~(i+v,t)-pv(i,t))mod2 (13) 

which are a consequence of the gauge symmetry mentioned above in 
Eq. (3). Thus, the scattering rules must conserve mod 2 the total number of 
balls on the edges of a plaquette. If all plaquettes have even numbers of 
balls, there are no frustrated plaquettes, but an odd number of balls means 
that the plaquette is permanently frustrated. Since this frustration "parity" 
is a property of the initial distribution of balls, the dynamics of a 

7 If we consider the c a s e  b m a  x = 0, our scattering rules differ from the HPP rule only for the 
cases involving an odd number of balls, which alone violate momentum conservation. 
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spin glass is exactly the same as a local Creutz microcanonical rule for 
the unfrustrated Ising model, up to initial conditions. Again this has 
similarities and dissimilarities with the cellular automata fluids/6) For the 
CA fluid, we know that there are two types of initial conditions that lead 
to laminar or turbulent dynamics, respectively. Because of the exact sym- 
metries of the discrete lattice fluid, a perfectly uniform flow will always stay 
laminar. The complexity of the subsequent dynamics that distinguishes 
between laminar or turbulent is coded in the initial conditions analogous 
to the choice between ferromagnetic or spin-glass dynamics for the Ising 
lattice gas. However, there are major differences. In the Ising lattice gas, the 
frustration (unlike vorticity) stays fixed in number and location, whereas 
for the H P P  fluid, vorticity can be created as one moves along an orbit. 

One dimension is very special, as we discuss below. In 1D there are 
just as many p~(i) bond variables as si spin variables, so that gauge 
invariance is a trivial redefinition of the spins. Also, momentum is conser- 
ved. More surprisingly, the numbers of positive and negative momentum 
components are essentially separately conserved at low density. It is likely 
that the continuum equations of one dimension bare little resemblance to 
the ones at higher dimensions. 

3.2. C o n t i n u u m  Di f fus ion  of Bath Part icles 

It is interesting to try to understand the dynamics for coarse-grain- 
average quantities such as the energy densities, 

Pbath(X, t ) =  (b(i, t ) ) ,  Plsing(X, t ) =  ~ (p~(i, t ) + p  ~(i, t ))  (14) 
,u>O 

where the notation ( - - - )  indicates an average over a large block of sites 
centered at x and the sum extends over all the positive directions 
#='1,  2 ..... d. For example, the linear continuity equation (4) might be 
approximated by expanding the finite differences to first order to get 

(~tPbath + t~tPlsing -{- V" (PlsingV) = 0 (15) 

in terms of the mean velocity V. defined by 

Ax 
PI~ing V.(x,  t) = ~ (p . ( i ,  t) - p .(i, t) ) (16) 

However, when one considers the nonlinear collision term in the trans- 
port equation (3) and the gauge constraints (13), reliable approximations 
are far from obvious. If continuum approximations are possible at all for 
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the spin-glass, one will have to allow for some kind of topological 
singularities to represent frustrated plaquettes. One test of the resulting 
continuum equations of motion is to demand that they be equivalent to the 
time-dependent Ginzburg-Landau equations for the average spin field 
(b(x, t) = ( s i ( t ) )  in the limit of zero frustrations. 

Numerical simulations can also offer a guide. For example, it is 
interesting to notice that the temperature-dependent diffusion "constant" 
for the equilibration of the effective thermal field T(x,  t) = l i f t (x ,  t), derived 
by Creutz (~2) in 2D, in fact corresponds to a fixed diffusion constant for the 
density of the bath particles Pbath(X, t). 

Creutz simulated the microcanonical Ising model with a thermal 
gradient, and by measuring the heat flow, 

Q = -tcVT (17) 

found that the thermal conductivity depended strongly on temperature 
(~c-~24ft2). To convert this result to the conduction of demons 
( Q = - - O V p b a t h )  , we expand /)bath at high temperaure, assuming local 
thermal equilibrium, 

Pbath(X, l) = 3 --  l O f t ( X ,  t )  + . . .  (18) 

As a result the new diffusion coefficient for the Pbath field is a nearly fixed 
constant (D ~_ 2.4) in the region above the phase transition. Hence the 
demon balls undergo Brownian motion, with its density Pbath governed by 
an almost linear diffusion equation. Presumably as one approaches the 
phase transition nonlinearities develop similar to those found by Boghosian 
and Levermore in their deterministic cellular automata diffusion model. (13) 

4. INTEGRABILITY IN ONE D I M E N S I O N  

Equilibrium is not always attained by classical systems with many 
degrees of freedom over long time scales. This was first noticed by Fermi 
etal. ,  (14) who simulated a 1D system of weakly coupled harmonic 
oscillators on the MANIAC I at Los Alamos. Specifically, they found no 
tendency to e quipartition among the normal modes. Further investigations 
of this system were made by Ford and Waters (15) and Zabusky and 
Kruskal, (16) who recognized that the failure of equipartition was due to the 
fact that soliton modes were present, and that scattered solitons maintained 
their integrity; the system is, in fact, a lattice version of the Korteweg- 
DeVries equation. The work o f T o d a  and of Flaschka (17) finally led to a 
complete understanding of the inverse, scattering transform. 



Microcanonical Ising Model 149 

One dimension is very special. In 1D the total momentum is actually 
conserved. Also, there are just as many p,(i) bond variables as si spin 
variables, so that gauge invariance is a trivial redefinition of the spins. 
Moreover, the + 1 momentum particles are equivalent to right- and left- 
moving kinks, respectively. 

Now we will show that if bi is unbounded, bma x = cO, the system is 
always integrable. Consider a configuration with b~= 0, for all i. Further- 
more, at t = 0 and j odd in some large neighborhood take sf = 1, i ~< j, and 
si = - 1 ,  i > j. This configuration is a right-moving particle (pi = 1) or kink. 
With periodic boundary conditions the total number of kinks is even, so an 
antikink must exist somewhere else. In our lattice gas description at t = 0 
right (or left-) moving kinks are represented by a ball moving on a link 
with pi(i, t ) =  1 [-or p_~(i, t ) =  1] f o r / = e v e n  (odd). As we apply Creutz's 
dynamics, the balls (kinks) move with constant velocity to the right or left. 

Left- and right-moving kinks can scatter. Again, take b i = 0  every- 
where and suppose there is one left-moving and one right-moving kink. 
When the kinks reach the same site k, there is an energetic loss in E~sing 
which is made up for by a transition from bj = 0 to bj = 2 or increasing 
Ebath.  This excitation at the site k (two balls bound together) remains for 
two time steps before decaying into a pair of balls (kinks) again. The 
scattering can be represented symbolically as in Fig. 3. The balls may be 
thought of as real particles which, upon colliding, stick together, before 

o - r  

+-o  

* -o  

b) 

~ o  

+-o 

Fig. 3. Examples of scattering events in 1D: (a) Two-body scattering. (b)Three-body 
scattering. 
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reversing direction. The phase shift, or bound-state lifetime, is always the 
same. 

If b i > 0  at some site, then bi can be thought of as the number of 
bound states of two kinks. For example, if we take a configuration with no 
kinks and bi = 0 everywhere except for i = j, then (for large N) bj will emit 
pairs of kinks at discrete intervals until bj = 0. With With bm,~ = oo, there 
is no restriction on the number of balls in a bound state at a single site. 

Any configuration of the system has a unique representation in terms 
of kinks and kink-bound states. In this representation, it is easy to see why 
the system is integrable. It is because, in N-body scattering, the phase shifts 
are additive. There is no connected many-body scattering term. Consider 
the case of three-body scattering in Fig. 3. First two kinks form a bound 
state. The bound state does not have the opportunity to decay before it is 
intercepted by another kink. However, each kink is phase-shifted by exactly 
twice the number of kinks moving in the opposite direction. Thus, any 
scattering of any number of kinks can be thought of as a sequence of two- 
body scatterings. 

Even if bma x < oo, the system will be integrable if the phase space is 
appropriately restricted. For  example, if N~< bma x < oo the system will act 
as if bma x = o0. It is also trivial to extend our argument to the case of 
bma x = 0, where there is no scattering at all. For  intermediate values of bma x 

there are scattering events which form bound states up to bma x balls, but 
if another simultaneous collision occurs that collision is elastic. Hence, 
there is a critical density where the system crosses over from one case to 
the other. Integrability is not obvious in this situation. 

4. N U M E R I C A L  RESULTS A N D  R E C O M M E N D A T I O N S  

We first noticed the integrability of the 1D system in a computer 
simulation of the lattice gas dynamics. This caused us to seriously question 
ergodicity in this lattice gas dynamics. In one dimension, independent of 
b . . . .  there is an additional momentum conservation law that fixes the 
number of right-moving minus left-moving kinks (balls), so the single orbit 
may cover only a small portion of the energy surface. Indeed, on a finite 
lattice at low kink density our argument implies that a typical orbit will 
have length T o r b i  t = O(N). This is clearly not true ergodic behavior. 

To check for this nonergodic behavior we have simulated the 1D 
system for a range of values of N and measured the length (/'orbit) of the 
orbits encountered. To select a "typical" orbit on the energy surface in 1D 
and 2D, we pick a random starting configuration of the Ising and bath 
variables in thermal equilibrium. This allows us to find orbits on the energy 
sphere with a probability given approximately by the relative size of the 
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orbit. Our procedure is as follows. We first simulate the canonical Ising 
system, 

Prob{si}=(1/Z)exp[-fl~_, (1 - sis;) 1 (19) 
(O') 

via heat bath to get an initial value of the spins (or moving balls). Then 
we obtain the analytical expression for the mean total energy for the system 
in equilibrium at temperature/?, 

ETot(f l )  = ( g l s i n g )  + ( E b a t h )  (20)  

from the mean bath energy, 

bmax / bmax 
(Ebath) = x  Z 2bexp(-Z,Bb)/~ exp(-2/~b) (21) 

b=0 / = b  0 

and from the mean Ising energy, 

(E~sing) = -J(N- 1 ) tanh(/~J) (22) 

in 1D or the corresponding Onsager solution on a finite torus (18) in 2D. 
From these expressions and the instantaneous value of the Ising energy, we 
calculate the deficit in the total energy at fixed fl to find the bath energy. 
The requisite number of bound-state bath balls is then set by choosing 
their initial position at random. Under the assumption of equilibrium 
this algorithm chooses orbits at random on a fixed-energy sphere with 
probability weighted roughly by their length (T orbit). In Fig. 4 we plot the 
cumulative distribution function (CDF) 

~ T orbit 
F(Torbi t )  = Porbit(T) dT (23)  

.'0 

as a function of Torbi t and system size N for 1D. The failure of ergodicity (2) 
is signaled by the slow growth in the largest orbits as N--* ~ relative to the 
exponential growth of the energy sphere or entropy of the system. In Fig. 5 
the orbit CDF is plotted against log(Torbit)/N. 

We have repeated this same procedure for picking the orbits in the 2D 
Ising lattice gas. The numerical results exhibit several interesting features 
(see Fig. 6). First, for very small systems, there are many small orbits, but 
as N exceeds about 10 x 10, the large orbits dominate and rapidly become 
so dominant that above N =  32x 32 we were unable to find any orbit 
under 50,000. As expected for ergodic behavior the orbit CDF scales 
approximately as a function of log(Torbit)/N. In fact, as anticipated by 

822/58/1-2-11 
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Fig. 8. Ratio R = Ebath/Elsing for a set of orbits in a 2D 8 x 8 system. The solid line indicates 
the value of R for the corresponding canonical ensemble in thermal equilibrium. 

Bhanot  et a/. (2) the limiting profile is consistent with the ergodicity require- 
ment  that  one giant orbit  consumes all but  a small, finite part  of the energy 
sphere. This feature can be seen more  easily in Fig. 7, in which the orbit  
C D F  is plotted against log(Torbit)/N. Obviously,  our  data  are only 
suggestive. These are very difficult inferences to draw from simulations, but  
the contrast  between the 1D and 2D dynamics is evident. 

Then, as a second check on ergodicity, we compare  time averages for 
the part i t ion between the Ising and bath energy R=Ebath/Exsing on 
individual orbits as a function of the size of the orbit  (To,bit) and the size 
of the system (N). Hence we are able to compare  the exact microcanonical  
part i t ion of energy (on an entire orbit) with the exact result for the canoni-  
cal distribution in thermal equilibrium (see equat ion above). In  Fig. 8, we 
see the compar i son  for a r andom selection of orbits in a 8 x 8 system; the 
solid line indicates the value of R for the canonical  distribution. With our  
algori thm for choosing orbits, we can show that the mean values over 
orbits should converge to the mean value of the canonical  ensemble inde- 
pendent  of the lack of ergodicity of individual orbits. 
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5. C O N C L U D I N G  R E M A R K S  

In conclusion, we see that on both theoretical and numerical grounds 
ergodicity is compromised in the 1D local microcanonical Ising dynamics. 
On the other hand, the numerical analysis of the distribution of orbits in 
the 2D dynamics does not indicate the same difficulty with ergodicity 
except for very small lattices. 

The insight that the lattice gas approach affords warrants in our 
opinion further theoretical and numerical investigation. In purely practical 
terms, if computer  codes based on the lattice gas dynamics are to challenge 
traditional Metropolis methods, two conditions must be met: ( 1 )They  

E 

4D 
v 
U 

100 

50 

0 50 100 150 200 

timQ 

(a) 

250 

S 

A 

3 
L 

I 

-i 
0 50 100 150 200 

k 

(b) 

250 

Fig. 9. Example of (a) connected part of the energy autocorrelation function and (b) its 
corresponding Fourier transform for a 2D 8 x 8 system. It shows peculiar periodicities and 
negative correlations. It does not exhibit exponential behavior. 
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must exhibit ergodicity, so that time averages of the dynamics are 
equivalent to thermal averages. (2) They must not exhibit longer relaxation 
times or worse critical slowing down to the point where this overwhelms 
their algorithmic speed advantage. 

At present we are measuring the autocorrelations in the 2D Ising 
model to determine the dynamical critical exponent for critical slowing 
down. As we see in Fig. 9, in small lattices on individual orbits the 
autocorrelations do not exhibit exponential behavior. Consequently, it is 
difficult to use finite-size effects in small lattices to measure autocorrela- 
tions, and at the very least we must average over autocorrelations in a 
large ensemble of orbits. Results on the critical slowing down of both local 
and nonlocal microcanonical Creutz dynamics will be reported in a 
subsequent publication. 

Also, by understanding the various versions of this local lattice gas 
dynamics, one has an efficient tool for studying nonequilibrium physics, 
such as domain formation, growth, and even fluid motion. In these applica- 
tions one needs to establish the relationship between iteration time and real 
time, and if possible to find the macroscopic equations of motion for 
average quantities to better understand the physical consequences. 

An even more interesting problem is to study the dynamics of the 
gauge-invariant lattice gas (GILG)  in the presence of frustrations. It will be 
interesting to compare the orbit size distribution for ferromagnetic versus 
spin-glass initial conditions in higher dimensions. The ultrametric structure 
of the spin glass and the long-lived metastable states should be reflected in 
this phase space portrait, if the lattice gas is a faithful reflection of the 
canonical ensemble distribution. 

How this correspondence comes about (if it does) is not trivial and we 
anticipate that much longer simulations will have to be performed before 
a clear picture emerges. 

A C K N O W L E D G M E N T S  

We thank Mike Creutz and Roscoe Giles for useful discussions. We 
thank Tom Toffoli for bringing to our attention another discussion of the 
.advantage of bond energy variables (19) in microcanonical Ising dynamics. 
We also thank Joao Leao of the Physics Computer Center at Boston 
University, Lloyd M. Thorndyke and Carl S. Ledbetter of ETA Systems, 
Inc., and Robert M. Price, Lawrence Perlman, and Gill Williams of Con- 
trol Data Corporation for their continued interest, support, and encourage- 
ment, and access to the Scientific Information Services CDC CYBER 205 
at Kansas City, Missouri. We thank the National Allocation Committee 
for the John von Neumann National Supercomputer Center for access to 



Microcanonical Ising Model 157 

the two CDC CYBER 205's at JvNC (grants 110128, 551702, and 551705); 
the Control Data Corporation PACER Fellowship grants (grants 85PCR06, 
86PCR01, and 88PCR01) for financial support; ETA Systems, Inc., for 
financial support (grants 304658, 1312963, and 1333824); the National 
Sciences and Engineering Research Council of Canada (grants NSERC 
A8420 and NSERC A9030) for financial support; the Continuing Educa- 
tion Division, Technical University of Nova Scotia, for financial support; 
and the Canada/Nova Scotia Technology Transfer and Industrial Innova- 
tion Agreement (grants 87TTII01 and 88TTII01) for further financial 
support. 

REFERENCES 

1. M. Creutz, Phys. Rev. Lett. 50:1411 (1983). 
2. G. Bhanot, M. Creutz, and H. Neuberger, Nucl. Phys. B 235:417 (1984). 
3. H. Herrmann, Saclay Preprint 86-060 (1986). 
4. M. Creutz and K. J. M. Moriarty, Comp. Phys. Comm. 39:173 (1986). 
5. Proceedings, Workshop on Cellular Automata, Physica D 10D (1984). 
6. N. Margolus, T. Toffoli, and G. Y. Vichniac, Phys. Rev. Lett. 56:1696 (1986); U. Frish, 

B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56:1505 (1986); D.D'Humieres, 
P. Lallemand, and T. Shimonura, Los Alamos National Laboratory Preprint 
LA-UR-85-4051 (1985); S. Wolfram, Cellular Automata Fluids 1: Basic Theory, Technical 
Report CA86-2, Thinking Machines Corp. (1986). 

7. J. Hardy, O. de Pazzis, and Yves Pomeau, Phys. Rev. A 13:1949 (1976). 
8. G. Y. Vichniac, Physica 10D:96 (1984). 
9. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977). 

10. R. C. Brower, K. J. M. Moriarty, Eric Myers, P. Orland, and P. Tamayo, Phys. Rev. B 
38:11471 (1988). 

11. R. C. Brower and P. Tamayo, in preparation. 
12. M. Creutz, Ann. Phys. 167:62 (1986). 
13. B. Boghosian and C. D. Levermore, A cellular automaton for Burgers' equation, Complex 

Systems 1:17 (1987); A deterministic cellular automaton with diffusive behavior, 
unpublished. 

14. S. Ulam, E. Fermi, and J. Pasta, Los Alamos Sci. Lab. Rept. LA-1940 (1955). 
15. J. Ford, J. Math. Phys. 2:387 (1961); J. Ford and J. Waters, J. Math. Phys. 4:1293 (1963). 
16. N. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. 15:240 (1965). 
17. M. Toda, Prog. Theor. Phys. Suppl. 59:1 (1976); H. Flaschka, Prog. Theor. Phys. 51:703 

(1974). 
18. A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185:832 (1969). 
19. C. H. Bennett, N. Margotus, and T. Toffoli, Phys. Rev. B 37:2254 (1988). 


